Architectural and thermodynamic principles underlying intramembrane protease function
نویسندگان
چکیده
Intramembrane proteases hydrolyze peptide bonds within the membrane as a signaling paradigm universal to all life forms and with implications in disease. Deciphering the architectural strategies supporting intramembrane proteolysis is an essential but unattained goal. We integrated new, quantitative and high-throughput thermal light-scattering technology, reversible equilibrium unfolding and refolding and quantitative protease assays to interrogate rhomboid architecture with 151 purified variants. Rhomboid proteases maintain low intrinsic thermodynamic stability (ΔG = 2.1-4.5 kcal mol(-1)) resulting from a multitude of generally weak transmembrane packing interactions, making them highly responsive to their environment. Stability is consolidated by two buried glycines and several packing leucines, with a few multifaceted hydrogen bonds strategically deployed to two peripheral regions. Opposite these regions lie transmembrane segment 5 and connected loops that are notably exempt of structural responsibility, suggesting intramembrane proteolysis involves considerable but localized protein dynamics. Our analyses provide a comprehensive 'heat map' of the physiochemical anatomy underlying membrane-immersed enzyme function at, what is to our knowledge, unprecedented resolution.
منابع مشابه
Long-term Proposal Report Structural Study of Regulated Intramembrane Proteolysis
Regulated Intramembrane Proteolysis (RIP) is a highly conserved signaling mechanism, where a signaling molecule is cleaved within the lipid bilayer by an intramembrane protease. Traditional wisdom argued that proteolysis requires water; however, in RIP, both the protease and the substrate are integral membrane proteins and the cleavage occurs within the hydrophobic lipid bilayer. It has been mo...
متن کاملTaking the plunge: integrating structural, enzymatic and computational insights into a unified model for membrane-immersed rhomboid proteolysis.
Rhomboid proteases are a fascinating class of enzymes that combine a serine protease active site within the core of an integral membrane protein. Despite having key roles in animal cell signalling and microbial pathogenesis, the membrane-immersed nature of these enzymes had long imposed obstacles to elucidating their biochemical mechanisms. But recent multidisciplinary approaches, including eig...
متن کاملSteric trapping reveals a cooperativity network in the intramembrane protease GlpG
Membrane proteins are assembled through balanced interactions among proteins, lipids and water. Studying their folding while maintaining the native lipid environment is necessary but challenging. Here we present methods for analyzing key elements of membrane protein folding including thermodynamic stability, compactness of the unfolded state and folding cooperativity under native conditions. Th...
متن کاملIdentification of an Archaeal Presenilin-Like Intramembrane Protease
BACKGROUND The GXGD-type diaspartyl intramembrane protease, presenilin, constitutes the catalytic core of the γ-secretase multi-protein complex responsible for activating critical signaling cascades during development and for the production of β-amyloid peptides (Aβ) implicated in Alzheimer's disease. The only other known GXGD-type diaspartyl intramembrane proteases are the eukaryotic signal pe...
متن کاملPurification, Characterization and Thermodynamic Assessment of an Alkaline Protease by Geotrichum Candidum of Dairy Origin
Background: Alkaline proteases is the important group of enzymes having numerous industrial applications including dairy food formulations. Objectives: The current study deals with the purification and characterization of an alkaline serine protease produced by Geotrichum candidum QAUGC01, isolated from indigenous fermented milk product, Dahi.<br...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2012